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Abstract’ - All arbiters proposed in ihe literalwe sufler from one of 
the following problem: large time romplexity and/or unfairness The 
first generalion arbilers for switches take into runsideration llre isstre of 
fairness by using a rotating round robin prior$ id, but their arbitration 
h e  is proportional lo the number of inputs which makes rlrm un- 
scalable for a given f l e d  amount of arbiiration lime. To redtrce the time 
contplexity, Chao 111 proposed a iree arbiter sfruelure nlicl! can per- 
form the arbifration in a f i t  and efjicienr way, but this fratirework can 
n d  guarantee fairness io all the inputs. When if is fed by advemary 
iraflc, some of the fraffic may not get ics fair share of the bandwidih. 
Motivated by solving ihese iwo problems, we propose a new algorithm 
which grraran1ee.r fairness and has U(logNj time. In additiun, we explore 
the possibility i k d  o w  solution of arbifer design can be embedded into 
the switch crossbar, thus reducing the cost as well as power consumption. 

r .  INTRODUCTION 
High-performance packet switches are becoming more 

and more important with the continuous growth of lntemet 
traffic. The ideal packet switch is an output-queued switch 
which has optimal delay-throughput performance under all 
traffic conditions. However, a direct implementation of OQ 
switches needs to run N times faster than the line rate for an 
NxN switch. In practice, we can only afford an architecture 
called CIOQ (Combined Input/Output Queued) switch. 
VOQ is the well-known technology used in CIOQ switches 
rather than FIFO queue to solve the notorious HoL problem. 
[2] Most switchedrouters commercially available nowa- 
days use VOQ technology as their memory strategy. 

In VOQ scheduling, bipartite graph matching is the most 
essential method to perform arbitration [ 2 ] .  However, find- 
ing the maximum matching of a bipartite graph is very 
costly, especiaIly when we want to employ some central- 
ized algorithms whose time complexity is no less than 
O(Nz7 as far as we know. We can only afford some heuris- 
tic algorithms to approximate the maximal matching, such 
as, iSLIP [4], FIRM 161, and DRRM 171. In fact, all the 
heuristic algorithms are designed in a distributed fashion. 
The reason why we favor distributed algorithms lies in its 
relatively easy hardware implementation. However, distri- 
bution algorithms over shared resources always lead to 
contention. In all the heuristic algorithms, such as, ISLIP, 
FIRM, and DRRM, input and output contention resolution 
plays a very crucial role in leveraging the throughput of 
routers. We need fast, fair arbiters residing in the input and 
output side to select one of the input requests efficiently. 
Arbiter design is always an important topic in the areas of 
router scheduler and network-on-chip systems [ 5 3. In this 

paper? we only focus on the design of arbiters for the output 
contention. 

11. RELATED WORK 
Consider an NxN packet switch. To resolve the output 

contention, a solution is to use an arbiter for each output to 
fairly select one among those incoming packets and send 
back a grant signal to the corresponding input, The arbitra- 
tion procedure is as follows [ l]: 

1. During every arbitration cycle, each input submits 
a one-bit request signal to each output arbiter, indicat- 
ing whether its packet, if any, is destined for the out- 
put. 
2. Each output arbiter collects up to Nrequest signals, 
among which one input which has an active request is 
granted according to some priority order. 
3. A grant signal is sent back to acknowledge the in- 
put. 

The second step is the most important in the perfomance 
of input-output matching. Two criteria must be taken into 
consideration here: speed and fairness. According to both 
industry and academia, two major proposals have come 
into being: Programmable Priority Encoder (PPE) for iSLIP 
(41 and Ping-Pong Arbitration (PPA) [l]. PPE uses round 
robin rotation to set its priority Iist to guarantee fairness. 
However, it is a centralized switch arbiter and the arbitra- 
tion time is proportional to the number of inputs. As a re- 
sult, the switch size or capacity is limited by a given fixed 
arbitration time. On the other hand, PPA has less time 
complexity, i.e. O(EogN) [I], but its priority list is not de- 
termined and unfair, which makes the throughput and per- 
formance unpredictable. 
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The basic idea behind PPA is to divide the inputs into 
groups. Each group has its own arbiter. Further grouping 
can be applied recursively to all the group request signals 
at the current layer, forming a tree structure, as illustrated 
in Figure 1. Thus, an arbiter with N inputs can be con- 
structed using multiple small-size 2-input arbiters (AR) at 
each layer. Using this strategy, the arbitration time is re- 
duced to O(logN). 

An AR contains an internally feedback state that indi- 
cates which input of the two is favored. Once an input is 
granted in one arbitration cycie, the other input will be fa- 
vored in the next cycle. In other words, the granted request 
is always chosen between the upper input and the lower 
input alternatively. The basic intuition behind this ping 
pong fashion is to make sure that once an inpiit is favored 
in this cycle, i t  wilI get the lowestpriority in the next cycle. 

The most distinctive feature of this tree-structured arbiter 
is that it distributes the computing of priorities over all the 
nodes (AR). However, the priority list produced by this 
mechanism is not predictable, although every configuration 
of the ARs can produce some permutation of N numbers, 
e.g. 1+3+2+4+1+ ..., when N = 4 for instance. The 
only strong point of this structure is that it pushes the cur- 
rent granted input into the rear of the priority list in the next 
round of arbitration, which is one property of the round 
robin arbiter. Moreover, the ping pong fashion can lead to 
serious unfairness under some adversary traffic. We use 
figure 2 to illustrate this situation. 

Request 
Sequence Ping Ponq 

-P 

-b 

4 

Ping Pong 

every time 

Ratio of Gran 

Figure 2: Unfairness of PPA 
We can see from figure 2 that input 4 gains half of the 

whole bandwidth. The unfairness is produced by the care- 
less toggling of the states of the ARs regardless of the traf- 
fic weights when doing arbitration. Ping-pong arbiter can 
not maintain an exact rotating round robin priority list. 

We are motivated by designing an exact rotating round 
robin arbiter which is regarded by PPE to be fair while 
maintaining the low time complexity property of PPA at 
the same time. And we will show that we can implant the 
arbiters into a switch crossbar. 

The rest of the paper is organized as following. We de- 
scribe our Fast Fair Arbiter (FFA) in section 111. After that, 
we analyze the most distinguished features of FFA and 
discuss the possibifity of implanting the arbiter into the 
crossbar chip. Then we have a conclusion in section V. 
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111. OUR FAST FAIR ARBITER 
We propose a new arbiter which maintains the low time 

complexity of PPA and can be fair at the same time. In fact, 
our arbiter can implement any round robin priority list 
which can be evenly fair or weighted. 
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Figure 3: Round Robin Disc 

Fairness: First, we need to make clear what the fairness 
means. Most fair crossbar schedulers are based on round 
robin arbitration. (See figure 3) The round robin has a rotat- 
ing priority pointer denoted by P. When doing arbitration, 
P just rotates clockwise until it hits a 'l ' , then grants for 
that input. The initial position of P for the next cycle is 
usually determined by various algorithms, such as ISLIP, 
RRM, and FIRM. 

The round robin arbiter guarantees that none of the input 
ports are starved, and that all are treated fairly. For example, 
for the adversary traffic that we illustrated in Figure 2, we 
can easily calculate that each flow gets just 25% bandwidth. 

If we want to get a weighted priority distribution among 
all the input ports, we can use weighted round robin which 
can be defined in a straightforward way. 

Round robin guarantees fairness. However, a direct im- 
plementation of the rotating round robin scheme is very 
time costly; it is U p ) ,  where Nis the number of inputs. 

Like 111, we also use a tree structure. Our contribution is 
that we can produce the exact round robin priority list with 
a little modification in the small 2-input arbiters (AR). Let 
us first describe AR in [l] in more detail. In each node of 
the tree, we need to maintain a one-bit status, 0 or 1, indi- 
cating which one of the input requests has higher priority. 
We use 0 to denote that the upper input has higher priority 
and 1 to denote that the lower input has higher priority. The 
structure of a 2-input arbiter (AR) is shown in figure 4. 

/ / - P I  

B 

Z = A  =. 8 means following: 
if A has request, 2 = A; 
else if 8 has request, Z = 8: 

i f ( s  = O )  
. .  

I 
end I 
Figure 4: Function of 2-input Arbiter (AR) 



Lemma 1: ff all the arbiter states are set as ‘O’, it will 
produce the priority list as { O ,  1, 2..., N I ) ,  as we can see 
from figure 5. 

This is easy tu prove. Input 0 wil1 always defeat inputs 1, 
2, ... N-1; input 1 will always defeat inputs 2, 3, , .. N-1; 
input 2 will always defeat inputs 3,  4? . . . N- 1, and SO on. 
Thus, the smaller the input number, the higher the priority. 

2-input arbiter (AR) 

Figure 5: Priority list with all states being ‘0’ 
We are now reqnired to produce any rotating priority list, 

for example, 16, 7: ... N-I? 0, 1, . .. 4, 51, as shown in fig- 
ure 6 where input 4 has the highest priority, input 7 the 
second, and so on, and input 5 has the lowest priority. 

Lemma 2: In an N-input ( i V ~ 2 ~ )  tree arbiter, for an input 
I, there’s one and only one path which contains k (=log2N) 
ARs from the ruoc to I. If we set the states of the k ARs 
from root to input I as the sequence of the binary represen- 
tation of number I, then input I has the highest priority, no 
matter how the other arbiter states are set. 

For example, if w t  set the four ARs along the path from 
root to input 6 of figure 6 as ‘0110’ which is the binary 
representation of number 6, then input 6 gets the highest 
priority among all the 16 inputs, no matter how other ARs 
are set. 

PrmJ First, notice this is a full binary search tree which 
can use the bits of the edges (0 or 1) along the paths from 
root to input to represent the index of that input. Trace &om 
root to input 1. (You may imagine I equals to 6.) If we go 
up, mark that edge ‘0’. if down, mark that edge ‘1’. We 
know that in this way, the sequence of the edge bits along 
the path from root to input I is exactly the binary represen- 
tation of number I. (sec the bits in the little rectangles of 
figure 6) We can easily find that setting these bits for the 
edge’s right node’s (AR) state will let these A R s  select the 
corresponding edges with higher priority, according to how 
the AR works, Thus, we can see that setting the states of 
the k ARs from root to input I as a sequence of the binary 
representation of number I will make input I get the highest 
priority along the path from root to input I. 

Second, we can see that, no matter how the states of 
other ARs are set, all othcr inputs except I will fail to input 
1 in somewhere the A R s  along the path from root to input I. 

Thus, input Z gets the highest priority. 

-& rbiter (AR)I 

0 

> 2-input arbiter (AR) x 
n 

An example of rotating priority list 

Figure 7: Grouped priority lists 

Now, we have seen that input 6 gets the highest priority 
by setting the arbiter states in the path from root to input 6 
as ‘0110’. But it still cannot produce the perfect rotating 
priority as (6, 7, . .. N - l ,  0, 1, .,. 4, 5 ) .  In fact, if we set all 
other arbiter states to ‘ O ’ ,  the priority list produced by fig- 
ure 6 is {{ti), {7}, {4, 51, (0, 1, 2,  3}, (8, 9. ... 14, 15)). 
As shown in figure 7 (a), the inputs besides 6 form four 
groups and each group is prioritized as round robin. If we 
can prioritize the groups correctly, we can generate the 
exact priority list as (6, 7, _._ N-1, 0, I ,  ... 4, 5 ) .  

From figure 7 (b) we find that the four groups are linked 
by exactly the path from the root to input 6, which indicates 
that we can prioritize the four groups at exactly the four 
arbiters of the root-to-6 path. We call the ARs along the 
path ARP. 

ARP will do little more work than the normal ARs.  
ARE”s structure is shown in figure 8, and the detailed algo- 
rithm of how the ARF works is s h o w  in figure 9. We call 
this tree structured arbiter made of ARs and ARps along a 
path as our Fast Fair Arbiter (FFA). 
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q f f q ;  Mark Z weak? 

Figure 8: Structure of ARP 
Algorithm ARP: 
begin 

if($ = O j  

i f ( s  = I j 

g“ (s = 1 && Z = A )  

2 = A  > B  >A.weak>B.weuk 

Z = B > A  > B. w e d  > A.weah- 

Z = Z. weak // Z is niarkd weak 
end 

.4. weak means A is marked weak. 
Z = A > B is defmed as in figure 4. 
Z = A > B > Cis defined recursively. 

Figure 9: Behavior of ARP 
The basic idea of how the FFA can guarantee rotating 

round robin priority list is as follows. A path from one in- 
put to the root can divide the tree into some sub-trees, 
forming some input groups. Setting all the AR states in a 
sub-tree can make that input group internally prioritized 
from top to bottom. Using ARPs along the path can hrther 
prioritize the input groups correctly. 

Theorem: If we set the arbiters along the path from root 
to input I as ARPs with the states being the binary repre- 
sentation of x, and the other arbiters as ARs with states 
being ‘O’ ,  then the tree arbiter can produce an exact rotating 
round robin priority list as (x.x+l, ... N-1, 0, 1, . .. x-1). 

G4 

GI  

G2 

Figure 10: Fast Fair Arbiter, x is the starting point of the 
round robin priority list. 

Proof? We use figure 10 to prove this theorem, where N 
= 16. 

First, from lemma 2, we can prove that input x has the 
highest priority We call the path from roof to input x the 
critical path (the thick line in figure 10). 

Second, the critical path will divide the tree into k 
(=10g2N=4 in our example) sub-trees. For example, we call 
these sub-trees as GI,  G2, G3, and G4. Each sub-tree is 
made from ARs whose states are set as ‘0’. From lemma 1, 
we can prove that all the inputs of one sub-tree, e.g.? G3, 
are prioritized internally from top to bottom. 

Third, we prove that the ARPs along the critical path will 
prioritize the four groups (G1, G2, G3, and G4) correctly. 

We can see from figure 10 that the critical parh separates 
the groups into two parts, one above the path, and the other 
below it. For the groups above the parh (G3 and G4), they 
are linked with the path at ARps with states being ‘1’; for 
the groups below the parh (G1 and G2), they are linked 
with the patA at ARPs with states being ‘0’. According to 
our algorithm shown in figure 9, the above groups (G3 and 
G4) will be marked weak if they succeed in entering the 
ARPs. Because they are marked weak, they will always 
lose contention to the groups below the criticalpath. So, we 
can conclude that the below groups (e.g., G1 and G2) have 
higher priorities than the above ones (e.g., G3 and G4). 

We now prove that the groups below the critical path 
have their proper priority in the round robin fashion. Con- 
sider any two groups G1 and G2, both below the path. We 
can see that, if G1 is closer from input x, then G1 links to 
the path at the ARP near from input x along the path. For 
example, in figure 10, x3 is closer than x2 from input x. So, 
any request from GI will enter the path from ARP x3 and 
then defeat G2 at the ARP x2, thus making G1 prior to G2. 
This is exactly what we need from the round robin. 

Similarly, we can prove that groups above the critical 
path will prioritize themselves exactly in a round robin 
fashion. 

Now that we have proven that the below part of groups 
has higher priority than the above part, groups in either part 
prioritize themselves correctly, and inputs in every group 
prioritize themselves correctly, we can conclude that the 
tree arbiter can produce an exact rotating round robin prior- 
ity list as {x, x+l,  ... N-1, 0, 1, .. . x-1). 

IV. FEATURES OF FAST FAIR ARBITER 
The two distinguished features of our Fast Fair Arbiter 

are: fairness and low time complexity. We achieve these 
goals by using rotating round robin arbiters and distribute 
the arbitration process into O(logN) levels in a tree archi- 
tecture. 

Note that the difference between AR and ARP is just for 
the clarity of discussion above. Actually, we need all the 
small 2-input arbiters to be ARP since every small 2-input 
arbiter can be in some critical path. Normally, if the small 
2-input arbiter is not in the critical path, it just behaves as 
an AR with state being ‘0’. 

We have proven the fairness of our FFA. Now we will 
analyze the time complexity. We do it in two phases; reset- 



ting the states of all the ARPs and doing arbitration. Ac- 
cording to the Theorem we have praven, we can see that 
there are two types of small 2-input arbiters to be set: ARPs 
in the critical path and those not in the critical path. Setting 
the states of ARPs not in the critical path is trivial since 
they are always ‘0’ and can be reset in constant time before 
every cycle starts. For the states of those ARPs sitting on 
the criticalpath, the states sequence is just the binary repre- 
sentation of the input number x whose length is logzN, so 
setting the states will cost O(1ogN) time. We can improve 
the time to be canstmil by setting the ARPs in parallel us- 
ing pre-determined memory (this is beyond the scope of 
this paper, and will be addressed in a sequel paper). 

Controller 

Processor Interface x 
Figure 11: Traditional switch fabric with arbiter and 

crossbar 

For the arbitration time, we can see that the winning re- 
quest will go through lugrN small 2-input arbiters in total. 
So the arbitration time is O(logN). We can use 4-input arbi- 
ters to replace all the small 2-input arbiters to improve the 
arbitration time a little. But the time complexity is still 

Another feature of our Fast Fair Arbiter is that it can be 
embedded into the crossbar. The two main components of a 
switch fabric are scheduler and crossbar. As we can see 
from Figure 11, traditionally, they are separated chips. 
Communications between scheduler and crossbar always 
cause headaches in hardware implementation, especially 
when the number of inputs exceeds one hundred. In indus- 
try, many companies have claimed that they can manufac- 
ture integrated schedulericrossbar switch fabrics. However, 
in most of their products, the scheduler and crossbar are 
just put together mechanically. Even they can be fabricated 
in one single chip, they are separately implemented. Cam- 
munications between them are not avoidable. 

One of our observations is that we can implement the 
crossbar using tree structures, just as we show in figure 12. 
For every output, it links to all the inputs in a tree fashion. 
It is natural to see that our FFA can be implanted in the 
ARPs in figure 12, thus making an arbiter to every output 
from all the inputs. By doing this, we remove the request 

~ ( l o g N ) .  

controller module and grant arbiter module in figure 11. 
The complicated communications are not needed at all. 

M v t f  outputs 

Figure 12: A 4x4 crossbar with implanted Arbiter 

v. CONCLUSION 
In this paper, we propose a Fast Fair Arbiter (FFA) de- 

sign for output contention resolution. We first compare the 
two well-known arbiters: PPE and PPA. PPE is fair but 
slow. On the other hand, PPA can reduce the arbitration 
time significantly, but it cannot guarantee fairness. 

We develop FFA from both PPE and PPA, taking the ad- 
vantages of fairness from PPE and the low time complexity 
from PPA. To guarantee fairness, our FFA can provide 
rotating round robin priority list which is the basic re- 
quirement of most of scheduling algorithms, such as ISLIP, 
DRRM, FIRM, and so on. To be fast, our FFA can do the 
arbitration in O(logw time complexity by employing a 
binary tree structure. The basic idea is that we distribute the 
arbitration process into a layered architecture, thus decom- 
posing the centralized arbitration process used by most 
arbiter designs. 

We also propose that our FFA can be implanted into the 
switch crossbar if we design the crossbar using a tree-based 
architecture. 
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