
Fast Fair Arbiter Design in Packet Switches
Feng Wang and Mounir Hamdi
Computer Science Department

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{ fwang, hamdi } @cs.ust.hk

Abstract’ - All arbiters proposed in ihe literalwe sufler from one of
the following problem: large time romplexity and/or unfairness The
first generalion arbilers for switches take into runsideration llre isstre of
fairness by using a rotating round robin prior$ id, but their arbitration
h e is proportional lo the number of inputs which makes rlrm un-
scalable for a given f l e d amount of arbiiration lime. To redtrce the time
contplexity, Chao 111 proposed a iree arbiter sfruelure nlicl! can per-
form the arbifration in a f i t and efjicienr way, but this fratirework can
n d guarantee fairness io all the inputs. When if is fed by advemary
iraflc, some of the fraffic may not get ics fair share of the bandwidih.
Motivated by solving ihese iwo problems, we propose a new algorithm
which grraran1ee.r fairness and has U(logNj time. In additiun, we explore
the possibility i k d o w solution of arbifer design can be embedded into
the switch crossbar, thus reducing the cost as well as power consumption.

r . INTRODUCTION
High-performance packet switches are becoming more

and more important with the continuous growth of lntemet
traffic. The ideal packet switch is an output-queued switch
which has optimal delay-throughput performance under all
traffic conditions. However, a direct implementation of OQ
switches needs to run N times faster than the line rate for an
NxN switch. In practice, we can only afford an architecture
called CIOQ (Combined Input/Output Queued) switch.
VOQ is the well-known technology used in CIOQ switches
rather than FIFO queue to solve the notorious HoL problem.
[2] Most switchedrouters commercially available nowa-
days use VOQ technology as their memory strategy.

In VOQ scheduling, bipartite graph matching is the most
essential method to perform arbitration [2] . However, find-
ing the maximum matching of a bipartite graph is very
costly, especiaIly when we want to employ some central-
ized algorithms whose time complexity is no less than
O(Nz7 as far as we know. We can only afford some heuris-
tic algorithms to approximate the maximal matching, such
as, iSLIP [4], FIRM 161, and DRRM 171. In fact, all the
heuristic algorithms are designed in a distributed fashion.
The reason why we favor distributed algorithms lies in its
relatively easy hardware implementation. However, distri-
bution algorithms over shared resources always lead to
contention. In all the heuristic algorithms, such as, ISLIP,
FIRM, and DRRM, input and output contention resolution
plays a very crucial role in leveraging the throughput of
routers. We need fast, fair arbiters residing in the input and
output side to select one of the input requests efficiently.
Arbiter design is always an important topic in the areas of
router scheduler and network-on-chip systems [5 3. In this

paper? we only focus on the design of arbiters for the output
contention.

11. RELATED WORK
Consider an NxN packet switch. To resolve the output

contention, a solution is to use an arbiter for each output to
fairly select one among those incoming packets and send
back a grant signal to the corresponding input, The arbitra-
tion procedure is as follows [l]:

1. During every arbitration cycle, each input submits
a one-bit request signal to each output arbiter, indicat-
ing whether its packet, if any, is destined for the out-
put.
2. Each output arbiter collects up to Nrequest signals,
among which one input which has an active request is
granted according to some priority order.
3. A grant signal is sent back to acknowledge the in-
put.

The second step is the most important in the perfomance
of input-output matching. Two criteria must be taken into
consideration here: speed and fairness. According to both
industry and academia, two major proposals have come
into being: Programmable Priority Encoder (PPE) for iSLIP
(41 and Ping-Pong Arbitration (PPA) [l]. PPE uses round
robin rotation to set its priority Iist to guarantee fairness.
However, it is a centralized switch arbiter and the arbitra-
tion time is proportional to the number of inputs. As a re-
sult, the switch size or capacity is limited by a given fixed
arbitration time. On the other hand, PPA has less time
complexity, i.e. O(EogN) [I], but its priority list is not de-
termined and unfair, which makes the throughput and per-
formance unpredictable.

o
f

2

3

4

5

B

7

e
Q

10

1 1

12

13

14

7 5

2-input arbiter (AR)

=I-
\

This research is supported under RGC HKUST6200/02E. 1 Figure 1: Ping-Pong Arbiter description

67803-89~-7/05/$20.00 (~)2005 IEEE. 412

The basic idea behind PPA is to divide the inputs into
groups. Each group has its own arbiter. Further grouping
can be applied recursively to all the group request signals
at the current layer, forming a tree structure, as illustrated
in Figure 1. Thus, an arbiter with N inputs can be con-
structed using multiple small-size 2-input arbiters (AR) at
each layer. Using this strategy, the arbitration time is re-
duced to O(logN).

An AR contains an internally feedback state that indi-
cates which input of the two is favored. Once an input is
granted in one arbitration cycie, the other input will be fa-
vored in the next cycle. In other words, the granted request
is always chosen between the upper input and the lower
input alternatively. The basic intuition behind this ping
pong fashion is to make sure that once an inpiit is favored
in this cycle, i t wilI get the lowestpriority in the next cycle.

The most distinctive feature of this tree-structured arbiter
is that it distributes the computing of priorities over all the
nodes (AR). However, the priority list produced by this
mechanism is not predictable, although every configuration
of the ARs can produce some permutation of N numbers,
e.g. 1+3+2+4+1+ ..., when N = 4 for instance. The
only strong point of this structure is that it pushes the cur-
rent granted input into the rear of the priority list in the next
round of arbitration, which is one property of the round
robin arbiter. Moreover, the ping pong fashion can lead to
serious unfairness under some adversary traffic. We use
figure 2 to illustrate this situation.

Request
Sequence Ping Ponq

-P

-b

4

Ping Pong

every time

Ratio of Gran

Figure 2: Unfairness of PPA
We can see from figure 2 that input 4 gains half of the

whole bandwidth. The unfairness is produced by the care-
less toggling of the states of the ARs regardless of the traf-
fic weights when doing arbitration. Ping-pong arbiter can
not maintain an exact rotating round robin priority list.

We are motivated by designing an exact rotating round
robin arbiter which is regarded by PPE to be fair while
maintaining the low time complexity property of PPA at
the same time. And we will show that we can implant the
arbiters into a switch crossbar.

The rest of the paper is organized as following. We de-
scribe our Fast Fair Arbiter (FFA) in section 111. After that,
we analyze the most distinguished features of FFA and
discuss the possibifity of implanting the arbiter into the
crossbar chip. Then we have a conclusion in section V.

0-7803-8924-7/05/$20.00 (~)2005 EH?. 473

111. OUR FAST FAIR ARBITER
We propose a new arbiter which maintains the low time

complexity of PPA and can be fair at the same time. In fact,
our arbiter can implement any round robin priority list
which can be evenly fair or weighted.

, Grant
IC

_.--------- __-- _.-.

P i+ l

Figure 3: Round Robin Disc

Fairness: First, we need to make clear what the fairness
means. Most fair crossbar schedulers are based on round
robin arbitration. (See figure 3) The round robin has a rotat-
ing priority pointer denoted by P. When doing arbitration,
P just rotates clockwise until it hits a 'l ' , then grants for
that input. The initial position of P for the next cycle is
usually determined by various algorithms, such as ISLIP,
RRM, and FIRM.

The round robin arbiter guarantees that none of the input
ports are starved, and that all are treated fairly. For example,
for the adversary traffic that we illustrated in Figure 2, we
can easily calculate that each flow gets just 25% bandwidth.

If we want to get a weighted priority distribution among
all the input ports, we can use weighted round robin which
can be defined in a straightforward way.

Round robin guarantees fairness. However, a direct im-
plementation of the rotating round robin scheme is very
time costly; it is U p) , where Nis the number of inputs.

Like 111, we also use a tree structure. Our contribution is
that we can produce the exact round robin priority list with
a little modification in the small 2-input arbiters (AR). Let
us first describe AR in [l] in more detail. In each node of
the tree, we need to maintain a one-bit status, 0 or 1, indi-
cating which one of the input requests has higher priority.
We use 0 to denote that the upper input has higher priority
and 1 to denote that the lower input has higher priority. The
structure of a 2-input arbiter (AR) is shown in figure 4.

/ / - P I

B

Z = A =. 8 means following:
if A has request, 2 = A;
else if 8 has request, Z = 8:

i f (s = O)
. .

I
end I
Figure 4: Function of 2-input Arbiter (AR)

Lemma 1: ff all the arbiter states are set as ‘O’, it will
produce the priority list as { O , 1, 2..., N I) , as we can see
from figure 5.

This is easy tu prove. Input 0 wil1 always defeat inputs 1,
2, ... N-1; input 1 will always defeat inputs 2, 3, , .. N-1;
input 2 will always defeat inputs 3, 4? . . . N- 1, and SO on.
Thus, the smaller the input number, the higher the priority.

2-input arbiter (AR)

Figure 5: Priority list with all states being ‘0’
We are now reqnired to produce any rotating priority list,

for example, 16, 7: ... N-I? 0, 1, . .. 4, 51, as shown in fig-
ure 6 where input 4 has the highest priority, input 7 the
second, and so on, and input 5 has the lowest priority.

Lemma 2: In an N-input (i V ~ 2 ~) tree arbiter, for an input
I, there’s one and only one path which contains k (=log2N)
ARs from the ruoc to I. If we set the states of the k ARs
from root to input I as the sequence of the binary represen-
tation of number I, then input I has the highest priority, no
matter how the other arbiter states are set.

For example, if w t set the four ARs along the path from
root to input 6 of figure 6 as ‘0110’ which is the binary
representation of number 6, then input 6 gets the highest
priority among all the 16 inputs, no matter how other ARs
are set.

PrmJ First, notice this is a full binary search tree which
can use the bits of the edges (0 or 1) along the paths from
root to input to represent the index of that input. Trace &om
root to input 1. (You may imagine I equals to 6.) If we go
up, mark that edge ‘0’. if down, mark that edge ‘1’. We
know that in this way, the sequence of the edge bits along
the path from root to input I is exactly the binary represen-
tation of number I. (sec the bits in the little rectangles of
figure 6) We can easily find that setting these bits for the
edge’s right node’s (AR) state will let these A R s select the
corresponding edges with higher priority, according to how
the AR works, Thus, we can see that setting the states of
the k ARs from root to input I as a sequence of the binary
representation of number I will make input I get the highest
priority along the path from root to input I.

Second, we can see that, no matter how the states of
other ARs are set, all othcr inputs except I will fail to input
1 in somewhere the A R s along the path from root to input I.

Thus, input Z gets the highest priority.

-& rbiter (AR)I

0

> 2-input arbiter (AR) x
n

An example of rotating priority list

Figure 7: Grouped priority lists

Now, we have seen that input 6 gets the highest priority
by setting the arbiter states in the path from root to input 6
as ‘0110’. But it still cannot produce the perfect rotating
priority as (6, 7, . .. N - l , 0, 1, .,. 4, 5) . In fact, if we set all
other arbiter states to ‘ O ’ , the priority list produced by fig-
ure 6 is {{ti), {7}, {4, 51, (0, 1, 2, 3}, (8, 9. ... 14, 15)).
As shown in figure 7 (a), the inputs besides 6 form four
groups and each group is prioritized as round robin. If we
can prioritize the groups correctly, we can generate the
exact priority list as (6, 7, _._ N-1, 0, I , ... 4, 5) .

From figure 7 (b) we find that the four groups are linked
by exactly the path from the root to input 6, which indicates
that we can prioritize the four groups at exactly the four
arbiters of the root-to-6 path. We call the ARs along the
path ARP.

ARP will do little more work than the normal ARs.
ARE”s structure is shown in figure 8, and the detailed algo-
rithm of how the ARF works is s h o w in figure 9. We call
this tree structured arbiter made of ARs and ARps along a
path as our Fast Fair Arbiter (FFA).

0*7803-8924-7/05/$20.00 (~)2005 IEE. 474

15=0/11

q f f q ; Mark Z weak?

Figure 8: Structure of ARP
Algorithm ARP:
begin

if($ = O j

i f (s = I j

g“ (s = 1 && Z = A)

2 = A > B >A.weak>B.weuk

Z = B > A > B. w e d > A.weah-

Z = Z. weak // Z is niarkd weak
end

.4. weak means A is marked weak.
Z = A > B is defmed as in figure 4.
Z = A > B > Cis defined recursively.

Figure 9: Behavior of ARP
The basic idea of how the FFA can guarantee rotating

round robin priority list is as follows. A path from one in-
put to the root can divide the tree into some sub-trees,
forming some input groups. Setting all the AR states in a
sub-tree can make that input group internally prioritized
from top to bottom. Using ARPs along the path can hrther
prioritize the input groups correctly.

Theorem: If we set the arbiters along the path from root
to input I as ARPs with the states being the binary repre-
sentation of x, and the other arbiters as ARs with states
being ‘O’ , then the tree arbiter can produce an exact rotating
round robin priority list as (x.x+l, ... N-1, 0, 1, . .. x-1).

G4

GI

G2

Figure 10: Fast Fair Arbiter, x is the starting point of the
round robin priority list.

Proof? We use figure 10 to prove this theorem, where N
= 16.

First, from lemma 2, we can prove that input x has the
highest priority We call the path from roof to input x the
critical path (the thick line in figure 10).

Second, the critical path will divide the tree into k
(=10g2N=4 in our example) sub-trees. For example, we call
these sub-trees as GI, G2, G3, and G4. Each sub-tree is
made from ARs whose states are set as ‘0’. From lemma 1,
we can prove that all the inputs of one sub-tree, e.g.? G3,
are prioritized internally from top to bottom.

Third, we prove that the ARPs along the critical path will
prioritize the four groups (G1, G2, G3, and G4) correctly.

We can see from figure 10 that the critical parh separates
the groups into two parts, one above the path, and the other
below it. For the groups above the parh (G3 and G4), they
are linked with the path at ARps with states being ‘1’; for
the groups below the parh (G1 and G2), they are linked
with the patA at ARPs with states being ‘0’. According to
our algorithm shown in figure 9, the above groups (G3 and
G4) will be marked weak if they succeed in entering the
ARPs. Because they are marked weak, they will always
lose contention to the groups below the criticalpath. So, we
can conclude that the below groups (e.g., G1 and G2) have
higher priorities than the above ones (e.g., G3 and G4).

We now prove that the groups below the critical path
have their proper priority in the round robin fashion. Con-
sider any two groups G1 and G2, both below the path. We
can see that, if G1 is closer from input x, then G1 links to
the path at the ARP near from input x along the path. For
example, in figure 10, x3 is closer than x2 from input x. So,
any request from GI will enter the path from ARP x3 and
then defeat G2 at the ARP x2, thus making G1 prior to G2.
This is exactly what we need from the round robin.

Similarly, we can prove that groups above the critical
path will prioritize themselves exactly in a round robin
fashion.

Now that we have proven that the below part of groups
has higher priority than the above part, groups in either part
prioritize themselves correctly, and inputs in every group
prioritize themselves correctly, we can conclude that the
tree arbiter can produce an exact rotating round robin prior-
ity list as {x, x+l, ... N-1, 0, 1, .. . x-1).

IV. FEATURES OF FAST FAIR ARBITER
The two distinguished features of our Fast Fair Arbiter

are: fairness and low time complexity. We achieve these
goals by using rotating round robin arbiters and distribute
the arbitration process into O(logN) levels in a tree archi-
tecture.

Note that the difference between AR and ARP is just for
the clarity of discussion above. Actually, we need all the
small 2-input arbiters to be ARP since every small 2-input
arbiter can be in some critical path. Normally, if the small
2-input arbiter is not in the critical path, it just behaves as
an AR with state being ‘0’.

We have proven the fairness of our FFA. Now we will
analyze the time complexity. We do it in two phases; reset-

ting the states of all the ARPs and doing arbitration. Ac-
cording to the Theorem we have praven, we can see that
there are two types of small 2-input arbiters to be set: ARPs
in the critical path and those not in the critical path. Setting
the states of ARPs not in the critical path is trivial since
they are always ‘0’ and can be reset in constant time before
every cycle starts. For the states of those ARPs sitting on
the criticalpath, the states sequence is just the binary repre-
sentation of the input number x whose length is logzN, so
setting the states will cost O(1ogN) time. We can improve
the time to be canstmil by setting the ARPs in parallel us-
ing pre-determined memory (this is beyond the scope of
this paper, and will be addressed in a sequel paper).

Controller

Processor Interface x
Figure 11: Traditional switch fabric with arbiter and

crossbar

For the arbitration time, we can see that the winning re-
quest will go through lugrN small 2-input arbiters in total.
So the arbitration time is O(logN). We can use 4-input arbi-
ters to replace all the small 2-input arbiters to improve the
arbitration time a little. But the time complexity is still

Another feature of our Fast Fair Arbiter is that it can be
embedded into the crossbar. The two main components of a
switch fabric are scheduler and crossbar. As we can see
from Figure 11, traditionally, they are separated chips.
Communications between scheduler and crossbar always
cause headaches in hardware implementation, especially
when the number of inputs exceeds one hundred. In indus-
try, many companies have claimed that they can manufac-
ture integrated schedulericrossbar switch fabrics. However,
in most of their products, the scheduler and crossbar are
just put together mechanically. Even they can be fabricated
in one single chip, they are separately implemented. Cam-
munications between them are not avoidable.

One of our observations is that we can implement the
crossbar using tree structures, just as we show in figure 12.
For every output, it links to all the inputs in a tree fashion.
It is natural to see that our FFA can be implanted in the
ARPs in figure 12, thus making an arbiter to every output
from all the inputs. By doing this, we remove the request

~ (l o g N) .

controller module and grant arbiter module in figure 11.
The complicated communications are not needed at all.

M v t f outputs

Figure 12: A 4x4 crossbar with implanted Arbiter

v. CONCLUSION
In this paper, we propose a Fast Fair Arbiter (FFA) de-

sign for output contention resolution. We first compare the
two well-known arbiters: PPE and PPA. PPE is fair but
slow. On the other hand, PPA can reduce the arbitration
time significantly, but it cannot guarantee fairness.

We develop FFA from both PPE and PPA, taking the ad-
vantages of fairness from PPE and the low time complexity
from PPA. To guarantee fairness, our FFA can provide
rotating round robin priority list which is the basic re-
quirement of most of scheduling algorithms, such as ISLIP,
DRRM, FIRM, and so on. To be fast, our FFA can do the
arbitration in O(logw time complexity by employing a
binary tree structure. The basic idea is that we distribute the
arbitration process into a layered architecture, thus decom-
posing the centralized arbitration process used by most
arbiter designs.

We also propose that our FFA can be implanted into the
switch crossbar if we design the crossbar using a tree-based
architecture.

REFERENCES
H. J. Chao, C. H. Lam and X. Guo, “Fast ping-pong arbhation for
input-output queued packet switches”, Internaiional Jooumul of
Communicurion sysrems. 2001, pp. 663-678.
J. Liu and M. Hamdi, “Stable and Practical Scheduling Algorithms
for High Speed Virtual Output Queuing Switches’’, Ihe ACUIEEE
Conferarce Infernationol Confwence on Computer Svstems and Ap-
pliccations. 2003.
S. T. Chuang, A. Goel, N. McKeown and B. Prabhakar, “Matching
output queuing with a combined input output queued swirch”, IEEE
Journal on Selecled Areas in Communications, vol. 17, no. 6, pp
1030-1039, June 1999.
N. Mckeown, P. Varaiyq and 1. Warland, “The iSLIP Scheduling
Algorithm for lnput-Queued Switch”, IEEE Transaction on Net-
works, 1999,pp. 133-167.
Kangmin Lee Se-Joong Lee Hoi-Jun Yoo, “A distributed crossbar
switch scheduler for on-chip networks”, Custom Inregrated Circuits
Conference, 2003.
D. N. SeIpanos and P. I. Antoniadis. ”FIRM: a class of distriibuted
scheduling algorithms for high speed ATM switches with multiple
input queues”. in Proc. IEEELVFOCOM, 2000, pp. 548-555.
H. J~ Chao, I. S . Park, “Centralized contention resolution schemes
for a large-capacity optical ATM switch”, in Proc. of the IEEE A 2%’
workshop, 1998.

0~7803-8924~7/05/$20.00 (0)2005 EEE. 476

